
© Pentest Limited 2006. All rights
reserved

ARMed Combat:
The fight for

personal security

Tim Hurman <tim.hurman@pentest.co.uk>

© Pentest Limited 2006. All rights
reserved

ARM is...

● RISC based processor
– Harvard architecture

● 32 bit based instruction set
– Switchable to Thumb mode (16 bit)

● Separate process privilege levels
● Low power
● VERY common

© Pentest Limited 2006. All rights
reserved

That Harvard thang

● Separate instruction and data buses
● Unsynchronised caches/buffers
● All self modifying code is crippled
● Makes exploits really... painful

– Return to libc exploits easiest

● Need to ensure caches are in-sync
– Requires privileged instruction access
– Trigger a kernel function to sync

© Pentest Limited 2006. All rights
reserved

© Pentest Limited 2006. All rights
reserved

Caches & Buffers

● Need to execute two instructions
– They require privileged mode
– User processes should not have this ability
– Only Linux uses privilege modes

● Trick kernel into flushing caches
– Still need to execute shellcode prelude

mcr p15, 0, r1, c7, c10, 4 // drain the write buffer
mcr p15, 0, r1, c2, c0, 0 // flush instruction cache

© Pentest Limited 2006. All rights
reserved

WinCE Stack Silliness

● Shellcode insertion trashes stack
● IP = SP = Jump Address
● Need to fix registers & stack

– System calls cause freeze – Easy DoS
– Cannot have SP <= IP <= FP
– FP = Start of thread stack
– Addresses > FP may be the stack of

another thread

© Pentest Limited 2006. All rights
reserved

© Pentest Limited 2006. All rights
reserved

ARM Debugging

● ARM has no hardware debug features
– Except XScale

● Software debuggers replace opcodes
– Code segments must be r/w
– Running code in debugger changes return

addresses and lots of other info
– Code may not even be vulnerable in

debuggers
– Messes with stack and memory

© Pentest Limited 2006. All rights
reserved

Debugging Gotchas

● Linux – easy, just use local GDB
● WinCE – harder

– Debuggers use ActiveSync – PPP session
– Stack overflow locks ActiveSync
– Debug session fails – neat huh

● Symbian
– Remote GDB

© Pentest Limited 2006. All rights
reserved

JTAG

● JTAGs are your friends
– Remote hardware based debugging
– Not reliant on sync software
– Expensive
– Debugger interfaces expensive and

fractured

● Can build or buy GhettoJTAG
● Needs a custom board of soldering to a

production board

© Pentest Limited 2006. All rights
reserved

Cool JTAG-ing

● Every I/O pin is tristate connected
– Can insert signals to bus of chip without

the other being aware
– Great for reverse engineering
– Access to complete memory range,

including MMAPed IO.

● Trace Buffers can record execution
trace

● Access to CPU registers

© Pentest Limited 2006. All rights
reserved

Dissecting an Exploit

1.Drain the data bus write buffer

2.Repair the stack, or create stack space

3.Decode our shellcode and shift it away
from the SP
● To the heap or further down the stack

4.Drain the data bus write buffer

5.Flush the instruction cache

6.JUMP!

© Pentest Limited 2006. All rights
reserved

Where do we go!

● WinCE has 32 “slots” which processes
run in.

● Process always mapped to its own slot,
and when running, to slot 0.

● Neat, no need to worry about the slot.
● Not so neat, slot 0's address is 0x00
● Never fear, ROM is here – System

processes always start in the same
order

© Pentest Limited 2006. All rights
reserved

Demo

● Working exploit on an HP iPAQ 5450
● Exploits the vCal parsing engine
● Always on
● Always unauthenticated
● Loads more of these bugs
● Affects all known WinCE devices with

the WIDCOMM Bluetooth stack

© Pentest Limited 2006. All rights
reserved

How about patches?

● Devices run code from Flash & *ROM
– Read only XIP code
– Can only patch in Flash/RAM
– Reverts to original on hard reset

● Complete update is lengthy
– Not something you want to do often

● Updates often contain new features
– Manufacturers charge for these

© Pentest Limited 2006. All rights
reserved

Protection Systems

● Many stack/heap overflow protection
mechanisms for x86, why not ARM?
– Cynically, the devices would fail often

● ARM CPUs have enough power to run
protection, why not use it?
– Want devices to be fast
– Lack of developer education?
– Lack of impetus?

© Pentest Limited 2006. All rights
reserved

Software protection

● Firewalls
– No network protection
– Even Linux devices

– 3rd party implementations

● Anti Virus
– Only flimsy support
– Targeted at specific Viruses/Worms

© Pentest Limited 2006. All rights
reserved

Imagine If...

● Virus infected you PDA
– Which stores your most confidential info

● You walk into your home/work and sync
– Creates network connection – unfirewalled
– Same access as sync computer

● PDA attacks internal network
● Leaks sensitive info to external sites
● PLUS it infects other PDAs

© Pentest Limited 2006. All rights
reserved

So Basically...

● We have loads of unprotected,
vulnerable devices about

● We connect them to our internal
networks

● We store our most personal information
on them
– Bank Details, PINs

● Anyone been here before?

© Pentest Limited 2006. All rights
reserved

Fin!
With Thanks to Mark Rowe

(because he threatened to sack me
if I didn't acknowledge him!)

