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ARM is...

● RISC based processor
– Harvard architecture

● 32 bit based instruction set
– Switchable to Thumb mode (16 bit)

● Separate process privilege levels
● Low power
● VERY common
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That Harvard thang

● Separate instruction and data buses
● Unsynchronised caches/buffers
● All self modifying code is crippled
● Makes exploits really... painful

– Return to libc exploits easiest

● Need to ensure caches are in-sync
– Requires privileged instruction access
– Trigger a kernel function to sync
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Caches & Buffers

● Need to execute two instructions
– They require privileged mode
– User processes should not have this ability
– Only Linux uses privilege modes

● Trick kernel into flushing caches
– Still need to execute shellcode prelude

mcr p15, 0, r1, c7, c10, 4  // drain the write buffer
mcr p15, 0, r1, c2, c0, 0   // flush instruction cache
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WinCE Stack Silliness

● Shellcode insertion trashes stack
● IP = SP = Jump Address
● Need to fix registers & stack

– System calls cause freeze – Easy DoS
– Cannot have SP <= IP <= FP
– FP = Start of thread stack
– Addresses > FP may be the stack of 

another thread
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ARM Debugging

● ARM has no hardware debug features
– Except XScale

● Software debuggers replace opcodes
– Code segments must be r/w
– Running code in debugger changes return 

addresses and lots of other info
– Code may not even be vulnerable in 

debuggers
– Messes with stack and memory
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Debugging Gotchas

● Linux – easy, just use local GDB
● WinCE – harder

– Debuggers use ActiveSync – PPP session
– Stack overflow locks ActiveSync
– Debug session fails – neat huh

● Symbian
– Remote GDB
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JTAG

● JTAGs are your friends
– Remote hardware based debugging
– Not reliant on sync software
– Expensive
– Debugger interfaces expensive and 

fractured

● Can build or buy GhettoJTAG
● Needs a custom board of soldering to a 

production board
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Cool JTAG-ing

● Every I/O pin is tristate connected
– Can insert signals to bus of chip without 

the other being aware
– Great for reverse engineering
– Access to complete memory range, 

including MMAPed IO.

● Trace Buffers can record execution 
trace

● Access to CPU registers
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Dissecting an Exploit

1.Drain the data bus write buffer

2.Repair the stack, or create stack space

3.Decode our shellcode and shift it away 
from the SP
● To the heap or further down the stack

4.Drain the data bus write buffer

5.Flush the instruction cache

6.JUMP!
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Where do we go!

● WinCE has 32 “slots” which processes 
run in.

● Process always mapped to its own slot, 
and when running, to slot 0.

● Neat, no need to worry about the slot.
● Not so neat, slot 0's address is 0x00
● Never fear, ROM is here – System 

processes always start in the same 
order
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Demo

● Working exploit on an HP iPAQ 5450
● Exploits the vCal parsing engine
● Always on
● Always unauthenticated
● Loads more of these bugs
● Affects all known WinCE devices with 

the WIDCOMM Bluetooth stack
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How about patches?

● Devices run code from Flash & *ROM
– Read only XIP code
– Can only patch in Flash/RAM
– Reverts to original on hard reset

● Complete update is lengthy
– Not something you want to do often

● Updates often contain new features
– Manufacturers charge for these
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Protection Systems

● Many stack/heap overflow protection 
mechanisms for x86, why not ARM?
– Cynically, the devices would fail often

● ARM CPUs have enough power to run 
protection, why not use it?
– Want devices to be fast
– Lack of developer education?
– Lack of impetus?
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Software protection

● Firewalls
– No network protection
– Even Linux devices

– 3rd party implementations

● Anti Virus
– Only flimsy support
– Targeted at specific Viruses/Worms



© Pentest Limited 2006. All rights 
reserved

Imagine If...

● Virus infected you PDA
– Which stores your most confidential info

● You walk into your home/work and sync
– Creates network connection – unfirewalled
– Same access as sync computer

● PDA attacks internal network
● Leaks sensitive info to external sites
● PLUS it infects other PDAs
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So Basically...

● We have loads of unprotected, 
vulnerable devices about

● We connect them to our internal 
networks

● We store our most personal information 
on them
– Bank Details, PINs

● Anyone been here before?
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Fin!
With Thanks to Mark Rowe

(because he threatened to sack me
if I didn't acknowledge him!)


