ARMed Combat: The fight for personal security

Tim Hurman <tim.hurman@pentest.co.uk>

ARM is...

- RISC based processor
 - Harvard architecture
- 32 bit based instruction set
 - Switchable to Thumb mode (16 bit)
- Separate process privilege levels
- Low power
- VERY common

That Harvard thang

- Separate instruction and data buses
- Unsynchronised caches/buffers
- All self modifying code is crippled
- Makes exploits really... painful
 Return to libc exploits easiest
- Need to ensure caches are in-sync
 - Requires privileged instruction access
 - Trigger a kernel function to sync

Caches & Buffers

- Need to execute two instructions
 - They require privileged mode
 - User processes should not have this ability
 - Only Linux uses privilege modes
- Trick kernel into flushing caches
 - Still need to execute shellcode prelude

mcr p15, 0, r1, c7, c10, 4 // drain the write buffer mcr p15, 0, r1, c2, c0, 0 // flush instruction cache

WinCE Stack Silliness

- Shellcode insertion trashes stack
- IP = SP = Jump Address
- Need to fix registers & stack
 - System calls cause freeze Easy DoS
 - Cannot have SP <= IP <= FP
 - FP = Start of thread stack
 - Addresses > FP may be the stack of another thread

ARM Debugging

- ARM has no hardware debug features
 - Except XScale
- Software debuggers replace opcodes
 - Code segments must be r/w
 - Running code in debugger changes return addresses and lots of other info
 - Code may not even be vulnerable in debuggers
 - Messes with stack and memory

Debugging Gotchas

- Linux easy, just use local GDB
- WinCE harder
 - Debuggers use ActiveSync PPP session
 - Stack overflow locks ActiveSync
 - Debug session fails neat huh
- Symbian
 - Remote GDB

JTAG

- JTAGs are your friends
 - Remote hardware based debugging
 - Not reliant on sync software
 - Expensive
 - Debugger interfaces expensive and fractured
- Can build or buy GhettoJTAG
- Needs a custom board of soldering to a production board

Cool JTAG-ing

- Every I/O pin is tristate connected
 - Can insert signals to bus of chip without the other being aware
 - Great for reverse engineering
 - Access to complete memory range, including MMAPed IO.
- Trace Buffers can record execution trace
- Access to CPU registers

Dissecting an Exploit

- 1.Drain the data bus write buffer
- 2.Repair the stack, or create stack space
- 3.Decode our shellcode and shift it away from the SP
- To the heap or further down the stack
 4.Drain the data bus write buffer
 5.Flush the instruction cache
 6.JUMP!

Where do we go!

- WinCE has 32 "slots" which processes run in.
- Process always mapped to its own slot, and when running, to slot 0.
- Neat, no need to worry about the slot.
- Not so neat, slot 0's address is 0x00
- Never fear, ROM is here System processes always start in the same order
 © Pentest Limited 2006.

Demo

- Working exploit on an HP iPAQ 5450
- Exploits the vCal parsing engine
- Always on
- Always unauthenticated
- Loads more of these bugs
- Affects all known WinCE devices with the WIDCOMM Bluetooth stack

How about patches?

- Devices run code from Flash & *ROM
 - Read only XIP code
 - Can only patch in Flash/RAM
 - Reverts to original on hard reset
- Complete update is lengthy
 - Not something you want to do often
- Updates often contain new features
 - Manufacturers charge for these

Protection Systems

• Many stack/heap overflow protection mechanisms for x86, why not ARM?

- Cynically, the devices would fail often

- ARM CPUs have enough power to run protection, why not use it?
 - Want devices to be fast
 - Lack of developer education?
 - Lack of impetus?

Software protection

- Firewalls
 - No network protection
 - Even Linux devices
 - 3rd party implementations
- Anti Virus
 - Only flimsy support
 - Targeted at specific Viruses/Worms

Imagine If...

- Virus infected you PDA
 - Which stores your most confidential info
- You walk into your home/work and sync
 - Creates network connection unfirewalled
 - Same access as sync computer
- PDA attacks internal network
- Leaks sensitive info to external sites
- PLUS it infects other PDAs

So Basically...

- We have loads of unprotected, vulnerable devices about
- We connect them to our internal networks
- We store our most personal information on them

- Bank Details, PINs

• Anyone been here before?

Fin!

With Thanks to Mark Rowe (because he threatened to sack me if I didn't acknowledge him!)